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The realization of a unilateral constraint is considered in a situation in which the stif~ess and coefficient of viscosity and the 
added masses tend to infinity simultaneously in a consistent manner. The main result is that limiting motions exist, which are 
identical on the boundary with the motions of a holonomie system with fewer degrees of freedom. However, a special effect, not 
present in the classical model, occurs here, namely, a delay in the time at which the constraint is released. 

The formal-axiomatic approach to the rigorous mathematical theory of the dynamics of systems with 
constraints has an obvious drawback: the origin and physical meaning of the basic principles remain 
unclear, as do the limits of applicability of the theoretical models. In that respect, one should prefer 
the constructive method outlined by Klein, Prandtl and Lecornieux in connection with Painlevt's 
paradoxes of dry t~iction [1]: instead of a holonomic constraint, one considers a field of elastic forces 
directed toward the appropriate surface. It turns out that as the stiffness tends to infinity the motions 
of the "free" system tend to motions of a system with a holonomie constraint. Rigorous formulations 
were given by Corxant; the proof for a conservative force field may be found in [2] and a general proof 
in [31. 

The problem of realizing holonomic constraints by elastic forces and forces of viscous friction was 
considered in [41. The stabilization of numerical methods for integrating the equations of motion with 
bilateral constraints, using additional conservative and dissipative forces, was studied in [5]. 

An analogous approach was developed for unilateral constraints in [6] (see also [7]): a non-retentive 
holonomic consmlint is replaced by a field of elastic forces directed towards the boundary, after which 
the stiffness is allowed to go to infinity. It tunas out that trajectories that cut the boundary tranwcersely 
tend to trajectories of a limiting system with impacts. This result has proved effective in investigating 
the stability of periodic trajectories and the evolution of vibro-impact systems [6-8]. The case in which 
the velocity of the system at the starting time touches the boundary surface was considered in [6, 9]. It 
turns out that if the stiffness is increased without limit, the motion of the "free" system tends to motion 
along the boundaJ~j, provided that allowance is made for the possibility of releasing the constraint. The 
case in which the ~cpplied forces are conservative was considered in [6], and the limit theorem was proved 
in [9] without assuming that the generalized forces are conservative. 

In this paper a more general situation will be considered: the half-space is replaced by a Kelvin--Voigt 
medium and the sl~ness and elasticity of the "free" system will be sent to infinity in a consistent manner. 

1.  L I M I T  T H E O R E M  

Let xl, • • • ,  x ,  be generalized coordinates of a mechanical system, let 

T = I ~. ao(x)xix ) (1.1) 
2 ,.j=l 

be the kinetic energy and let F I , . . . ,  Fn be generalized forces, which depend on x and x'. We introduce 
a unilateral constraint, given by the inequality 

J(.r) ~ 0 (1.2) 

wherefis  a smooth function such that dr# 0 at points wheref  -- 0. We put I~ -- {x: f(x) = 0}. Clearly, 
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Z is a regular hypersurface. Let us consider a motion x( t )  of the system with initial data 

x(O)=x o, x'(O)=~, f(xo)=O, ~-~-f(Xo)D=O 
Ox 

(1.3) 

The last condition means that the velocity vector ~ touches Z. Otherwise this will be a motion with 
impacts. 

In motion on the surface Z the function x( t )  will satisfy the Lagrange equations with multiplier 

(~T) " aT ~f 
~x" - -~x = F + R" R = ~"~x ' f = O (1.4) 

The force R is a reaction, which is a covector, van.ishing at vectors (1.3) tangent to E: R ~  = 0. With the 
covector R = {Ri} we associate the vector r = {r'} with components 

n 

r i =  Y 
j f l  

where II a O II is the matrix inverse to II ao II. The vector r is clearly orthogonal to Z in the intrinsic metric 
defined by the kinetic energy (1.1). Let  ~t be the algebraic value to the projection of r onto the normal 
to Z; I gt I equals the magnitude of  the reaction. 

For the motion under consideration, t --> x( t )  e Z, the Lagrange multiplier ~. and the projection It 
are certain continuous functions of  time. If tt(t) t> 0 for 0 ~ t ~< x, then, considered from the standpoint 
of  the classical model of  dynamics with a unilateral constraint in the interval [0, x], the system will move 
along the surface Z. But if it(t) < 0 in some interval t ~ (x, x + 8), 8 > 0, then when t = x the system 
will leave Z and become free. 

Following [6], let us replace the unilateral constraint (1.2) by a viscoelastic Kelvin-Voigt medium 
filling the half-space f(x) ~< 0. The elastic properties of the medium are defined by its potential energy 

VN = TN/2/2 (1.5) 

and its viscosity by the Rayleigh dissipative function 

O N =  2 L,~x J (1.6) 

where ]3 and Tare non-negative constants. In the domainf(x) I> 0 the functions Vjv and O~t are assumed 
to vanish. The potential (1.5) is usually used in the problem of realizing holonomic constraints (cf. [2, 
3]). The dissipative forces -oNg~v/~x', corresponding to the Rayleigh function (1.6), perform no work 
when the system is moving along the surface f = const. 

When the medium is deformed, its particles are displaced in a direction transverse to Z. Therefore, 
to describe the dynamics of  the system in the half-space f(x) ~ 0, the effect of the added masses must 
be taken into account. This effect will be modelled by a variation in the inertial properties of the system: 
instead of the kinetic energy (1.1), we take the energy 

= x" a = const > 0 (1.7) 
2 

Clearly, at all values o f N  ~ 0 the quadratic form (1.7) is positive-definite. In the doma in f  I> 0 we 
must, of  course, put TN---- T. In what follows the parameter a will tend to zero. Regardless of  physical 
feasibility, the introduction of added masses is related to the regulation of  the passage to the limit 
N ----> oo. 

Thus, the motion of  the " f ree"  system is described by the equations 

N (1.8)  -7f-gF = F -  ax- 
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In the domain f I-- 0 these equations are identical with the usual Lagrange equations 

( ~ ) T )  OT 
~-:x" ) - -~x = F (1.9) 

Remark. Equations (1.8) are formulated on the assumption that the system is "embedded" in a 
Kelvin-Voight medium filling the half-space f(x) < 0. One can consider a different model of the inter- 
action of the system with a viscoelastic barrier: the barrier may exert a reactive force --~VN/Ox - Oep~/ar" 
only in the direction of increasingf. At other times it is assumed to vanish. This model was developed 
for impact theory in [7]. An example of its use to determine when the system is released from the 
constraint will be considered in Section 6. 

Let xN(t) be the solution of Eqs (1.8)--(1.9) with initial data x~(0) = x0, xjv(0) = ~ which satisfies 
conditions (1.3). Let us consider the auxiliary second-order equation 

az'" + 13z" + yz = -Ix(t) (1.10) 

where Ix(t) is, as defined above, the algebraic value of the magnitude of the reaction of the constraint 
when the system is moving over the surface Z with the same initial data. Let z(t) be the solution of Eq. 
(1.10) defined by the conditionsz(0) = 0,z'(0) = 0. 

Theorem 1. Assume that Eqs (1.4) have a solutionx(t),x(O) = x0,x'(0) = ~, in the interval 0 ~< t ~< x 
+ 5, 5 > 0, and z0 ~) < 0 for 0 < t < x. Then for all 0 ~< t ~< x the limit 

x^(t)  = lim XN(t) (1.11) 
N - - ~  

exists and the function x^( t )  satisfies Eq. (1.4). If in addition x is the first simple zero if z(t) and 
Ix(x) < 0, then the limit (1.11) exists in some larger interval 0 ~< t ~< x + 81, 81 > 0, wherex"  (t) satisfies 
system (1.9) for x < t ~< x + 51 andf(x^(t))  > 0. 

It should be emphasized that the ease x = 0 is not excluded. The function t ~ x  ^ (t) may be regarded 
as the motions of a mechanical system with kinetic energy T and a unilateral constraint, driven by given 
generalized forces F, in the limit model of the motion. Since this model depends on the parameters og 
13 and T, it may be called the ( ~  13, T)-model. Seen in the context of all these models, the motion of the 
system on the surface Z obeys the same law. They differ only in the conditions for release of the 
constraint. If  one multiplies the parameters ct, 13 and y by any positive number, the resulting model is 
dearly the same. 

2. P R O O F  OF T H E  MAIN T H E O R E M  

In the neighbourhood of 5". we introduce semi-geodesic coordinates xb • • •, xn, in which f --- xn and 
the metric (1.1) be.comes 

I 2 1 n-t 
T= T* +-~a,,,x'~ , T ° ='i.T~l "7= 

We know (see, e.g. [7, 10]) that such coordinates always exist. Equations (1.4) are written in terms of 
them as 

x;? = e .  
I 3a,,,, 

~x~ ) ~x i 2 ~x i 

¢.,,,, _ _ L , ; :  = + R. x,, = 0 ( 2 . 1 )  
~x,, 2 t~x, 

Suppose that the motion of the system in the interval 0 ~< t ~< x is confined to the surface Y.. Then it 
follows from the last equation of system (2.1) that 
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The zero subscript means that the expression is considered at the point x, = 0, x;, = 0. 
It is clear that (2.2) is precisely p. At the same time, the first equation of (2.1) takes the form of the 

ordinary Lagrange equations for a system with II - 1 degrees of freedom 

aT,* * 

( 1 

aT; 

-zj- , 
-z=(&, iCN (2.3) 

Let us write Eqs (1.8) taking into account the fact that nowf = x,. The first group of equations of 
(2.1) remains unchanged, while the second becomes a little more complicated 

ar I au,,,, 7 
I (0.N + u,,,, )x;# 1’ - - - - - x*- 

ax,, 2 ax,, ” 
= F;, - fiN.r, - yN.r, (2.4) 

It should be borne in mind that this equation only holds when x,, < 0. We put E = l/N and divide both 
sides of (2.4) by N 

ar;;+b;, +yx,, =E 
JT 1 ~%,, 4, +-+--A’ 
3X,, 2 &,, 

;,I - (a ,111. r;, Y 
3 

(2.5) 

We solve the first group of equations of (2.1) and (2.5) simultaneously. When t = 0 we have: 
xi(O) = xf , xi (0) = Vi (i < n) x,,(O), x,(O) = 0. Since the right-hand sides of the system are analytic functions 
of E, we can use small parameters for the solution 

.X;(f.E) = xj’(r)+&&t)+..., i < /I 

-~,,(t,&)=&r~,(t)+... (2.6) 

The functions x:(t), i < n satisfy system (2.3) with initial data xi(O) = ~7, x;(O) = ui, while the other 
functions xf, 6, . . . vanish at t = 0 together with their derivatives. Note that, by (2.2), the bracketed 
expression on the right of (2.5) is identical with -R(t) at E = 0. Consequently,,xl,(t) is a solution of Bq. (1.1) 
with zero initial data. By assumption, x:(t) c 0 in the interval 0 < t < 2. Consequently, for small 
E > 0, the coordinate x,, is negative if 0 c t < 2. In this time interval, therefore, the expansions (2.6) 
are indeed valid. Letting E + 0, we obtain the first part of Theorem 1. 

If z is the first simple zero of the function z(t) (z’(z) > 0), then x,(t, E) has a zero ?E = ‘F + O(E) at 
small values of E. Since CL(Z) < 0 by assumption, it follows by continuity that the functron p is negative 
in some small neighbourhood of 2. Thus, at t = 2, 

s,, = 0, x’ ,) = aa 

In addition, ~(2,) < 0. Consequently, for small E > 0 and t > 2, the system will move in the half-space 
x,, > 0. Letting E tend to zero and remembering that the solutions are continuous with respect to the 
initial data, we obtain the desired conclusion. 

3. DELAY OF THE RELEASE TIME OF THE CONSTRAINT 

If (x = p = 0, then, as shown in [9], the limiting function x”(t) exists and is a motion of the system 
from the classical standpoint. In particular, the first zero 2 of p(t), when p.(z) < 0, is the time of release 
of the constraint. By Theorem 1, in the (01, 8, y)-model the system certainly moves on the surface X 
until the solution of Eq. (1.10) with zero initial data becomes negative. 

Proposition1.If~2~4ayand~(t)~OforO~t~z,thenz(t)<OforallO<t~z+~,where~>0. 

proof. If 8’ 2 w, the roots of the characteristic equation olh’ + l3X + y = 0 are real. Denote them by iI and &. 
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Let Xz > ~ (the treatment of the ease ~,t = X2 is analogous). Then the solution of Eq. (1.10) with zero initial data is 

t, xlt j e_~,tsla (.~)ds + e -  ~c_~2.~.la(s)d ~ 
Z ( I ) =  (./(~.1 _ ~.2 ) 0 ~(~t.i -- ]k2 ) 0 

For small t > 0, obviously, z(t) < 0. Let t = ~ be the first positive zero of z(t). Then 

p ] -' e-~'~ 
~ e - ~ ' l s p . ( s ) d $  ~ t , - x 2 r p ( s ) d . ~  • = 
o L o .I e-X2~ 

Let ~ <~ x. Then, by assumption, V. > 0 and so, by Cauchy's mean-value theorem, the interval (0, ~) contains a 
point 11 such that e (x:q)n = e (~'t-L2~. Since ~,1 > 2k,2 and 11 < ~, this is a contradiction. 

Corollary. If 13 > 0 .'rod ot is small, one has the phenomenon of persistence of the constraint. 

Proposition 2. Let ~2 < 40rt and to2 = 40ty - 132, to > 0. If It(0 > 0 for 0 < t < x ~< n/to, then z(t) < 0 for all 
0 < t < x + r,,~¢ > 0. 

This is proved in the same way as Proposition 1. 
One should not thhak that z(t) always has a zero to the right of the first zero of !1(0. Here is a simple counter- 

example: z'" + z = --it(t), where I~(t) = 1, 0 ~< t <~ 3n/2, lJ.(t) = 1/2, t > 3n/2. 
The solution of the; equation with zero initial data, for t > 3n/2, has the form z(t) = (-1 + sin 0/2 + cos t, 

i.e. z(2~) = 1/2. 

4. R E A L I Z A T I O N  O F  A C O N S T R A I N T  BY E L A S T I C  F O R C E S  

We will consider  the impor tant  special case in which 13 = 0, cx = v 2, v ~ 0. We may assume without  
loss o f  general i ty that  y = 1. It has been  shown [9] that,  in the limiting case ot = 0, the funct ion x ^ (t) 
describes the mot ion  of  a system with a unilateral  constraint  in the classical model .  

For  small v Proposit ion 2 does not  provide significant information about  the propert ies  of  the solution 
o f  the equat ion  

v;z'" + z = -It(t)  (4.1) 

with zero  initial data.  This solution has the form 

Z(t,v) = _ s i n  t i  ~('c) cos x-- dx + cos t--i ~t(x) sin--X dx 
V o V V V o V V 

Integrat ion by para~ yields the following asymptotic  representa t ion 

z( t ,v)  = g O ) c o s  t -  g ( t ) +  O(v) 
V 

(4.2) 

If  ~t(0) ~ 0, this funct ion will have no  limit as v ---> 0, because it osculates rapidly. Howeve r  

1 
lim lira J z(x, v)a~ = - p ( t )  

tl,t2"-~t V"¢O t 2 - -  t I t I 
(4.3) 

Thus,  af ter  avera$ing, we obtain -~t(t) in the  limit. T h e  same value is obta ined f rom (4.1) by formally 
substituting v -- 0. 

Le t  us proceed  now to Courant 's  problem of  the realization of  a bilateral constraintf(x) : 0, assuming 
that,  apar t  f rom elastic forces with potent ia l  energy Nf2/2, there  are added  mass~s, which increase the 
kinetic energy by v:~V(f')e/2, where  v is small. We must  put  y -- 1, 13 -- 0, ct = v + in Eq.  (2.4). On the 
right we obtain an additional te rm -Nxn. As  N - ~  0. we obtain an indeterminate  expression o f  the type 
% 0 . 0 " .  It follows f rom the results of  Sect ion 2 that  this te rm tends to the funct ion z(t, v) as N -¢ **. 
Let t ing v --* -0 and regularizing (4.3), we see that  the  t e rm - N x  n tends to the react ion of  the holonomic  
constraint  f -- xn = O. This result was obta ined  differently in [3]. 
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If Ix(0) > 0, then, for small t > 0, we havef(x~t))  < O: the system is in a "forbidden" domain and is 
subject to large elastic forces that tend to push it out into the half-space f - -  -> O. One may ask, how long 
can the system stay in the domainf(x) < 07 The asymptotic formula (4.2) gives some non-trivial estimates: 
if Ix(t) > Ix(0), then for small e = 1/N and v the trajectory t ---> xN(t) of the system is in the domain 
f(x) < O. Indeed, by (2.6), xn(t) = ez(t, v) + o(~). It remains to observe that if Ix(t) > Ix(0), then, for 
small v, the function z(t, v) will be negative. 

5. R E A L I Z A T I O N  OF A C O N S T R A I N T  BY A N I S O T R O P I C  F R I C T I O N  

We will consider one more important special case: T = O, (x --> 0. We may assume without loss of 
generality that [I = 1. Under these assumptions the solution of Eq. (1.1O) with initial data zero is found 
from the relation 

e-t lcL t 
z" = - - - ~ t ( s ) e " m d ¢  (5.1) 

0 

Let us investigate the behaviour of the function z(t, a) as a --* O. 

Proposition 3. If Ix is a smooth function (say, C2), then for t ~ (0, x] 

lim z '( t ,a)=-~t(t)  (5.2) 
Ct ----~ 0 

r 
lim z(t, a) = -~ g(s)ds (5.3) 

ct--,0 0 

Indeed, integrating (5.1) twice by parts, we obtain the formula 

z" =-Ix(t)+ e-t/a~t(O)+a[e-t/a'[t(s)eS/a lto -e-r/a iIx"eS/ads 1 
o J 

To estimate the integral in this formula we use Bonnet's form of the mean-value theorem 

(5.4) 

S i n c e  ~t E C 2, t h e  f u n c t i o n  

o o 

t 
e -H°t  f l . t . . eS /ads  

o 

is bounded over any finite time interval. It remains to let a -~ 0 in (5.4). 
If St(0) * 0, the convergence in the formula is not uniform: z" -~ 0 at t = 0. In the general case, therefore, the 

truth of (5.3) does not follow from (5.2). However 

l 
fe-Smds=a(i _e -I/n) 
0 

and the bracketed expression in (5.4) is uniformly bounded. Hence the integral of the right-hand side tends to the 
integral of-Ix as a ~ 0, which it was required to prove. 

Let us assume that Ix(t) > 0 for small t > 0. Then, obviously, f(x~r(t)) < O. Since xn(t, e) = ez(t) + 
o(~), it follows that for small e we have xn < 0 ifz(t) < O. Let x be the first zero of the function (5.3). 
Clearly, p(x) ~< 0. Most typically, Ix(x) < 0. Then x is a simple zero of z(t). Consequently, in the limit 
when e = 1/N-~ O, the coordinate xn vanishes for the first time, and moreover Ix(x) < 0. Therefore, for 
t > x the system will leave the surface g and its dynamics will be described by Eqs (1.9). 

We finally arrive at the following model of the motion. If Ix(0) > 0, the system begins to move over 
Y. until the mean value of the reaction of the constraint vanishes for the first time. If the reaction is 
negative at that instant (this is the typical case), the system becomes free. If the trajectory of the "free" 
system then cuts the surface I: transversely, there will be an absolutely inelastic impact: the normal 
component of the velocity will vanish [6]. 
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6. L I M I T  T H E O R E M  IN T H E  CASE OF A N I S O T R O P I C  F R I C T I O N  

Let  us consider tllLe case in which t~ = 0 and T = 0 (Eqs (1.8) involve only additional forces of viscous 
friction). It turns out that as N ~ ** the solutions of Eqs (1.8) tend to the motion of the system described 
in Section 5. Let  xN(t) be the solution of  Eqs (1.8)--(1.9) with the initial data x~0) ,  xk(0) that satisfy 
(1.3), and let x be the first simple zero of the function (5.3). 

Theorem 2. A 8 > 0 exists such that, in the interval 0 ~< t ~< x + 8, the limit 

x.( t )  = lim xN(t) (6.1) 
N----~ ~ 

exists, and moreover, for 0 ~< t ~< x the function x.(t) satisfies Eqs (1.4), but for t > x + 8 it satisfies 
Eqs (1.9) and the inequalityf(x.(t)) > 0. 

Proof. In the neighbourhood of  E, we introduce semi-geodesic coordinates x1, . . . , X n (as in Section 
2). We first consider a simpler case: the realization of a bilateral constraint f(x) = 0 by viscous friction 
forces. Let  x ~ t )  be the solution of Eqs (1.8) (in which tx = T = 0, I~ = 1) with initial data (1.3). 

Over an interval of time, the solutions xtc(t) of the singular equations (1.8)will have a limit x" ( t )  
[11, 12], and this limit function will be a solution of system (1.4). Since the initial data satisfy (1.3), the 
following asymptotic formulae hold (see, e.g. [13]) 

(XN(I)) k =X~.(t)+O(8) (k < n) 

(xu( t ) )  , = exJn(t)+o(8), 8 = I / N  (6.2) 

Substituting (6.2) fcrxn into (2.5), we obtain 

8(x]) )" = E(F,,, + OT / 3x,, )x ̂  (t) + o(~:) 

Therefore  

t 

' = -I la(s)ds (6.3) X n 
0 

By assumption, if 0 < t < xe (xe = x + O(e)) and e is small, the coordinate x,, is negative and vanishes 
at time ~e. Consequently, in the interval [0, ~e] the function x ~ t )  satisfies Eqs (1.8) and the inequality 
f(x) ~< 0. Hence, when 0 ~ t ~< % the functions x.(t) (of (6.1)) andx^( t )  are identical. 

Let  us assume that g(t) < 0. By continuity, g(t) is negative in some neighbourhood of  x. Then 
x;,(~e) > 0 for small e > 0 and a 8 > 0 exists such that, for ~e < t ~ ~e + 8, the motion of the system occurs 
in the half-spacexn > 0. Letting e tend to zero, we obtain the desired conclusion. The theorem is proved. 

Consider a simple er, ample. Let a point of unit mass move in the x,y plane, assuming that in the left half-plane 
(x ~< 0) the force applied to the point has components 0, -g (g = const > 0) but in the fight half-plane (x > 0) the 
components are 0, g. Consider motion subject to the constraint y t> 0 and with initial data 

x(0)=-I ,  y(0)=0, x ' (0)=l ,  y ' (0)=0 (6.4) 

By the classical equations of motion, the point will leave the constraint at time t = 1 (whenx = 0). The function 
g(t) is given by 

O(t)=g, t<~ 1; ~t(t)=-g,t>! 

The first simple zero x of the integral of g(t) is 2. Thus, in the (0, 1, 0)-model the point must be released from 
the constraint at time ,t = 2. 

This result may be derived directly. Replace the action of the constraint by a viscous friction force with components 
0, -Ny" (in the domain y ~< 0). Then the solution with initial data (6.4) is given by the formulae 

x ( t ) = t - I ;  v( t )= g ~ e - N t - g t +  g--~ t<~l 
" N 2 N N 2 ' 

y(,)= g_~(2eN_l)e-Nt + g t _ 2 g ( i  + 1 ) 
N ~ N Nk ~ , t ~ l  (6.5) 
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These formulae hold as long asy  ~< 0, i.e. t ~< % = 2 + O(1/N). When t > ~ the point will describe a parabola in 
the upper half-plane. Letting N tend to infinity, we obtain the above result as to the release time of the constraint. 

Let us now consider a different model of the interaction of the point with a barrier: the friction force is non- 
zero only wheny < 0 andy" < 0. Then formulae (6.5) hold for t ~< 1 + O(1/N). For large t the point will describe 
a parabola in the half-planey > 0. In the limit as N--~ ~ the point will leave the constraint at time t = 1 (as in the 
classical model). 

This last observation may be generalized. Let us assume that the reaction of the barrier -0OJ~x" is non-zero 
only whenf  < 0 a n d f  < 0. At all other times it is assumed equal to zero. In other words, the barrier cannot "retain" 
the system. Let B(0) > 0 and let % be the first simple zero of B(t). It can be shown that ifx~(t) is the motion of a 
system with initial data (1.3) subject to the aforementioned viscous friction force, then as N ~ oo the function xt¢(t) 
will tend to the classical motion of the system with a unilateral constraint f ~ 0. In particular, t = % is the release 
time of the constraint. Indeed, according to (6.2) and (6.3), the friction force will vanish when 

(XN)I, = --e,~t(t) + o(e) (6.6) 

Since x is the first simple zero of ~t, it follows from the implicit function theorem that the first positive zero of 
Eq. (6.6) will be %e = x + O(e), and at time %e the coordinate xn and velocityxh will be O(~). Letting e tend to zero, 
we obtain the desired conclusion. This result may prove useful in the numerical solution of differential equations 
with unilateral constraints: the introduction of viscosity has a stabilizing effect in numerical methods of integration 
(cf. [5]). 
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